Nano
FAQs

Explore our FAQ for clear answers on the basics of nanocoatings, application processes, and common failures. Can't find what you're looking for? Any question you want us to answer and feature here? Get in touch!

In Demand
Performance
Abdul Al Khalidya, KSA

“Great FAQ on Nanotech. I've bookmarked this page.”
- Abdul Al Khalidya, KSA

Lotus Nano: Leading independent nanotech and nanocoating consulting in India.

Too Lazy to Read FAQ's?

Ask your Question right here!

Understanding
Nanotechnology

NANO

/næn.oʊ-/
origin latin for: "dwarf"

One billionth of a stated unit.
Here: E.g.: 0.000,000,001 of a meter
That's it!

Let's set the stage: What's Nanotech - actually?

Nanotechnology is the manipulation and engineering of materials on a molecular and atomic (1-100 nanometer or nm) scale. It was first proposed by physicist Richard Feynman in his famous 1959 lecture "There's Plenty of Room at the Bottom," in which he discussed the possibility of manipulating and arranging individual atoms and molecules to create new materials and devices.

The development of the scanning tunnelling microscope in 1981 and the atomic force microscope in 1986 enabled scientists to directly manipulate and image individual atoms and molecules, which helped to pave the way for the growth of nanotechnology as a field.

Some of the key achievements of nanotechnology include the creation of new materials with unique optical, electrical, and magnetic properties; the development of new medical diagnostic and treatment methods, such as targeted drug delivery and imaging techniques; and the creation of new devices for energy production and storage, such as solar cells, batteries and even photosynthesis.

The outlook for nanotechnology is very positive, some placing it into the Top 10 of the most promising technologies that will shape our future, as it has the potential to revolutionise a wide range of industries, from medicine and electronics to energy and materials science. Researchers are working on developing new methods for synthesising and manipulating nanomaterials, as well as improving our understanding of the unique properties of materials at the nanoscale.

Here some examples:

  • Medicine: Researchers are developing new diagnostic methods, such as biosensors and imaging techniques, as well as new therapeutic methods, such as targeted drug delivery and gene therapy. Nanoparticles can also be used for medical imaging and for sensing biological molecules.
  • Electronics: Nanotechnology is being used to develop new types of transistors, data storage devices, and other electronic components that are smaller, faster, and more energy-efficient than current technologies. Researchers are also exploring the use of carbon nanotubes and graphene in electronics.
  • Energy: Scientists are working on developing new methods for producing and storing energy, such as solar cells and batteries that use nanomaterials. These devices can have improved performance and efficiency compared to conventional technologies.
  • Materials science: Researchers are using nanotechnology to create new materials with unique properties, such as self-cleaning surfaces, improved strength and toughness, and new optical and electronic properties. Applications include textiles, catalysts and coatings.
  • Environmental Science: One of the most promising application of nanotechnology is its ability to help address environmental problems. Researchers are investigating the use of nanomaterials in areas such as water treatment, air purification, and contaminant remediation.
  • Biotechnology: Researchers are using nanotechnology to develop new tools for understanding and manipulating biological systems at the cellular and molecular level. Applications include the development of new drug delivery systems, diagnostic techniques, and biosensors.
  • Cosmetics: cosmetics industry is extensively using the nanoparticles for its products such as sunscreens, anti-aging creams and makeup products, these tiny particles can be used to deliver active ingredients in a more targeted and effective way, resulting in improved product performance.
  • Agriculture: Nanotechnology is being used to develop new methods for improving crop yields and food quality, as well as new methods for pest control and soil management. Nanoparticles can be used as a carrier for fertilizer, pesticides, and other essential agricultural inputs, allowing for more efficient and targeted delivery.
  • Water treatment: Researchers are using nanotechnology to develop new methods for removing impurities from water, such as heavy metals and pollutants. By using nanoparticles, researchers can create new types of filters and adsorbents that can more effectively remove impurities from water.
  • Defence: Nanotechnology is also being used in defence industry, for example, to develop new types of lightweight, durable, and stronger materials for use in body armor, protective clothing, and other defence-related equipment.
  • Smart materials: Researchers are developing new materials that can respond to their environment and have "smart" properties, such as self-healing capabilities and the ability to change shape or form. These materials have potential applications in fields such as robotics, biomedical engineering, and aerospace.
  • Quantum computing: Research in the field of quantum computing involves the manipulation of individual atoms or molecules to create new types of computing devices that can perform certain types of calculations much faster than current computers. The properties of nanoscale systems make them ideal for this type of research.
  • Optoelectronics: Nanotechnology is being used to develop new devices that can control the flow of light and electricity, such as LEDs, lasers, and photovoltaics. These devices can be more efficient and have a wider range of applications than current technology.
  • Memory devices: Researchers are using nanotechnology to develop new types of memory devices, such as non-volatile memories and memories with high storage density. Applications include data storage, biometrics, and internet of things.
  • Environmental monitoring: Researchers are developing new methods for monitoring the environment using nanotechnology, such as air and water quality sensors, as well as methods for cleaning up environmental contaminants.
  • Advanced manufacturing: Researchers are using nanotechnology to improve manufacturing processes, such as 3D printing and microfabrication. By manipulating materials at the nanoscale, it is possible to create new structures and shapes that are not possible with traditional manufacturing methods.
  • Cybersecurity: Researchers are developing new methods for securing data and communications using nanotechnology, such as quantum encryption and nanoscale sensors.
  • Automotive: Nanotechnology is being used to improve the performance and efficiency of automotive parts and systems, such as batteries, fuel cells, and catalysts.
  • Food packaging: Researchers are developing new packaging materials that can extend the shelf life of food and protect it from contamination using nanotechnology.
  • Therapeutic delivery: Researchers are using nanotechnology to develop new methods for delivering drugs and therapies to specific cells and tissues in the body.
These are just a few examples of the many ways that nanotechnology is being used to improve various industries and aspects of our lives, and I hope it gives you an idea of the possibilities that this field holds. It is a complex and interdisciplinary field, with researchers from many different backgrounds collaborating to create new technologies and applications for the betterment of society.

Research in this field continues to produce new discoveries and advancements and the future looks promising with further breathtaking developments on the horizon.

Historical
Background

The Origins: Feynman's Vision and the Birth of Nanotechnology

Nanotechnology, often perceived as a modern phenomenon, has its roots shadowing centuries with hints of 'nano' appearing in traditional craftwork. But it wasn't until the 20th century that we laid the scientific foundation. The pivotal turn came with renowned physicist Richard Feynman's legendary lecture, "There's Plenty of Room at the Bottom," in 1959, where he envisioned control and manipulation of individual atoms and molecules. Although Feynman never used the term 'nanotechnology,' his idea is often credited for birthing nanotech's conceptual groundwork.

The Term is Born: Defining Nanotechnology in the 1980s

It wasn't until the 1980s that the term 'nanotechnology' was coined by K. Eric Drexler, in his book "Engines of Creation," laying out molecular nanotechnology's incredible potential. However, around the same time, technologist Norio Taniguchi had used 'nanotechnology' to describe semiconductor processes that operated at the nanometer level.

Visualising the Invisible: The Advent of the Scanning Tunnelling Microscope

The booming '80s also saw the development of the scanning tunnelling microscope by IBM Zurich's Gerd Binnig and Heinrich Rohrer, offering the means to 'see' atoms for the first time. This brought about an era of exploration and manipulation at the atomic level, a feat that earned them the 1986 Nobel Prize in Physics.

The Carbon Revolution: Discovery of Fullerenes

Further fuelling the growth of nanotechnology was the discovery of fullerenes or Buckyballs in 1985. Named after Buckminster Fuller, renowned for his geodesic domes, these hollow, soccer ball-shaped molecules marked the first in a class of entirely new carbon molecules - the third form of carbon after diamond and graphite. The three scientists behind the discovery - Robert Curl, Harold Kroto, and Richard Smalley - were awarded the Nobel Prize in Chemistry in 1996.

The Modern Era: Nanotechnology Today and Looking Forward

Developments continued into the 21st century with the design and synthesis of new nanoscale materials, like carbon nanotubes and quantum dots. From Feynman's vision, through Nobel-recognized innovations, to the present, nanotechnology has profoundly influenced fields from electronics, medicine, and energy, revamping products with nanocoatings to nano-circuitry. This encapsulates a tiny slice of the vast history of nanotechnology, a field propagating huge impacts from the very minuscule.

The Emergence and Evolution of Nanocoatings

Nanotechnology's stride into the 21st century brought forth a transformative application: nanocoatings. The technology was spurred by developments in the late 20th century, specifically the advent of tools like the Scanning Tunnelling Microscope, enabling atom-scale manipulation. The discovery of natural nanoscale materials, like fullerenes, gradually led to engineered materials for specific applications, marking an initial step in advanced nanocoatings. The turn of the millennium saw nanocoatings evolve into offering multi-functional properties such as anti-corrosion, self-healing, and thermal resistance. Whilst tightly interwoven with the broader canvas of nanotechnology, the journey of nanocoatings is a testament to the nuanced and diverse applications of this disruptive technology.

2023 Nobel Prize in Physics: A Recognition of Nano-Scale Marvels

In 2023, the Nobel Prize in Physics was awarded to Pierre Agostini, Ferenc Krausz, and Anne L'Huillier. The researchers' breakthroughs in ultrafast and nanoscale physics underscored the continuing impact of nanotechnology in the scientific world, affirming its relevance and importance in uncovering new aspects of the physical world captured in the minuscule, yet powerful, nano-scale.

Types of
Effects

hydrophobic

/hʌɪdrə(ʊ)ˈfəʊbɪk/
latin: "fear of water"

What is Hydrophobic and How is it Used?

Hydrophobic is a term used to describe a surface or substance that repels water. This property can be harnessed through the use of certain nanoparticles, which can be applied to a variety of surfaces to create an invisible, molecular-level layer that lasts for many years.

Hydrophobic coatings have a wide range of applications across many industries, including water treatment, heat transfer, biomedical devices, and more. They have a strong self-cleaning effect on surfaces such as plastics, metals, textiles, glass, paints, and electronics, and can also improve the anti-freezing behavior of heat pipes.

Applications

Hydrophobic coatings can be applied to a wide range of substrates, including metals, glass, ceramics, plastics, textiles, concrete, wood, stone, paper, rubber, and silicon. Some common applications include:

  • Furnishings, including fabric, leather, synthetic upholstery, carpets, rugs, wooden furniture, glass surfaces, metal surfaces, stone surfaces, concrete or natural stone surfaces, and plastics and polymers.
  • Displays, including smartphone and computer touch displays, projection displays for TVs, OEM applications, and optical components of video systems.
  • Electronics, including ink repellency, inkjet printer nozzles, needles, stainless steel components, micro-fluidic device barriers, channels, and wells, and anti-wetting and non-stick applications.
  • Optics industry, including eye glasses, sunglasses, and other consumer optics, microscope, camera, and scope lenses, sapphire and gorilla glass, and goggles for industrial applications.
  • Industrial applications, including metal and stainless-steel coatings, mesh coatings, pipe and canal surface modifiers, tin and chrome plated metal parts, blood and body fluid repellents, surface modifiers for guide wires, wave guides, and braces, and oil repellent coatings for gas, smoke, and oil sensors and detectors.
  • Consumer goods, including stainless steel appliances and devices, household appliances, blades, needles, and other cutting tools, wipes and sprays for oil repellents, and jewelry coatings for easy cleaning.

Benefits

Hydrophobic coatings offer numerous benefits, including:
  • Improved lifespan of products
  • Reduced maintenance costs
  • Better performance in harsh environments
  • Self-cleaning properties
  • Anti-freezing behaviour
  • Protection against water, dust, and other contaminants

To learn more about how hydrophobic coatings can benefit your specific needs, please Contact us.

hydrophilic

/ˌhʌɪdrə(ʊ)ˈfɪlɪk/
latin: "love for water"

What is Hydrophilic and How is it Used?

Hydrophilic is a term used to describe a surface or substance that attracts and absorbs water. Hydrophilic surfaces have a strong affinity for water, and tend to absorb or retain water. This property can be harnessed through the use of certain materials, which can be applied to a variety of surfaces to create an invisible, molecular-level layer that attracts and retains water.

Hydrophilic coatings have a wide range of applications across many industries, including medical devices, electronics, and water treatment. They can be used to create surfaces that promote the adhesion and growth of cells, facilitate the passage of fluids through membranes, and improve the performance of electronic components.

Applications

Hydrophilic coatings can be applied to a wide range of substrates, including metals, glass, ceramics, plastics, textiles, and paper both during and post-production. Some common applications are:

  • Medical Industry: Uses hydrophilic coatings on devices such as catheters, endoscopes, and stents to reduce friction, thereby increasing patient comfort and ease of insertion.
  • Solar Industry: Similar to Hydrophobic nanocoatings, Hydrophilic coatings play a significant role in maintaining the efficiency of solar panels. By aligning water droplets to spread across the surface, these coatings promote a self-cleaning effect. This actively removes dust and debris that could potentially block sunlight, reducing the need for regular manual cleaning, and therefore enhancing the panel's energy generation capability and longevity.
  • Water Treatment Industry: Hydrophilic membranes are used in water filtration systems to increase the efficiency of filtration and improve fluid passage.
  • Optical Industry: Coatings are applied to optical devices like glasses and camera lenses to prevent fogging or condensation, and maintain clear vision by allowing water to spread evenly across the surface.
  • Textile Industry: Utilizes hydrophilic finishes to improve moisture wicking properties and comfort of clothing, especially for sportswear.
  • Electronics Industry: The coatings can improve the performance and lifetime of electronic components by managing the heat and moisture exposure.
  • Automotive Industry: Applied to car parts like windshields and side mirrors to improve visibility during rain, as it allows the water to spread and roll off the surface more readily.
  • Food Packaging Industry: Uses hydrophilic coatings to control the moisture content inside the packaging, thereby improving the shelf-life and quality of the food products.
  • Marine Industry: Coatings are used on marine vessels and equipment to reduce biofouling, improving durability and performance.
  • Solar Industry: Coatings are applied to solar panels to ensure maximum sunlight absorption by reducing dust and dirt accumulation.
  • Construction Industry: Hydrophilic coatings on surfaces of various construction materials like concrete and metal help prevent the build-up of ice and snow.

Benefits

Hydrophilic coatings offer numerous benefits, including:
  • Friction Reduction: Hydrophilic coatings are used frequently in the medical industry where they significantly reduce the friction of medical devices, such as catheters and guidewires, making them easier and more comfortable to insert.
  • Fog and Ice Prevention: Because hydrophilic surfaces spread water into a thin layer rather than beading, they are excellent at preventing condensation fog and ice formation. This property is useful in several industries, such as optics (camera lenses, eyeglasses) and automotive (windows, mirrors).
  • Improved Cleanability: Hydrophilic coatings often make surfaces easier to clean. Water spreads out across the surface, making it easier for dirt and dust particles to be washed away.
  • Enhanced Comfort: In textiles, these coatings can improve the tactile comfort of fabrics, helping to distribute moisture and prevent the unpleasant clamminess associated with sweating.
  • Water Absorption: Hydrophilic coatings can absorb and retain large amounts of water. This property is beneficial for applications that require high moisture absorption.
  • Biofouling Reduction: In the marine industry, hydrophilic coatings can reduce the amount of biofouling on ships' hulls, leading to increased fuel efficiency and reduced maintenance.
  • Improved Wettability: Hydrophilic surfaces help increase the wettability of a substrate, improving processes like painting or coating where a uniform spread of the solution is desired.
  • Enhanced Drug Delivery: In the pharmaceutical industry, hydrophilic coatings can improve the efficiency of drug delivery systems by improving biocompatibility and reducing unpleasant side effects.

To learn more about how hydrophilic coatings can benefit your specific needs, please Contact us.

oleophobic

\ olioˈfō-bik\
latin: "fear of oil/fat"

What is Oleophobic and How is it Used?

Oleophobic is a term used to describe a surface or substance that repels oils and other hydrophobic liquids. Oleophobic coatings have a strong self-cleaning effect on surfaces such as plastics, metals, textiles, glass, paints, and electronics, and can also improve the anti-smudge behaviour of displays.

Oleophobic coatings can be applied to a variety of surfaces to create an invisible, molecular-level layer that is resistant to oils and other hydrophobic liquids. They have a wide range of applications across many industries, including consumer electronics, automotive, and healthcare.

Applications

Oleophobic coatings can be applied to a wide range of substrates, including metals, glass, ceramics, plastics, textiles, and paper. Some common applications include:

  • Consumer electronics, including smartphones, tablets, and smartwatches, where oleophobic coatings can improve the anti-smudge behaviour of displays and reduce fingerprint smudging.
  • Automotive, including windshields, headlights, and mirrors, where oleophobic coatings can improve visibility and reduce the accumulation of dirt and debris.
  • Healthcare, including medical equipment, where oleophobic coatings can prevent the buildup of oils and other substances, reducing the risk of bacterial growth.
  • Textiles, including clothing and upholstery, where oleophobic coatings can repel oils and other stains.

Benefits

Oleophobic coatings offer numerous benefits, including:

  • Improved self-cleaning properties for a wide range of surfaces
  • Improved anti-smudge behaviour for displays
  • Reduced accumulation of dirt and debris for automotive surfaces
  • Reduced risk of bacterial growth for medical equipment
  • Improved stain resistance for textiles
To learn more about how oleophobic nanocoatings can benefit your specific needs, please Contact us.

omniphobic

\ omniˈfō-bik\
latin: "fear of everything"
An "omniphobic" surface is a surface that repels most liquids and other materials. These surfaces are typically characterised by a high degree of micro- or nano-scale roughness, which creates a lot of air pockets. These air pockets make it difficult for liquids or other materials to adhere to the surface.


Omniphobic surfaces have certain unique properties, including:

  • Low adhesion: Liquids and other materials have a difficult time adhering to an omniphobic surface, making them easy to clean and maintain.
  • Low wetting: Liquids will bead up and roll off an omniphobic surface, rather than spreading out and wetting the surface. This property is known as "low wetting."
  • High contact angle: The contact angle is a measure of how much a liquid beads up on a surface. An omniphobic surface will have a high contact angle, meaning that the liquid will bead up more on the surface.
  • Low energy: Omniphobic surfaces typically have a low surface energy, which means that they don't easily attract other materials.
  • High stability: The surface structure does not change over time, keeping its high hydrophobicity and oleophobicity performance
Above properties make omniphobic surfaces ideal for applications where liquids or other materials need to be repelled, such as in anti-fouling coatings, self-cleaning surfaces, water treatment, and medical devices.

It's also worth noting that some Omniphobic surfaces can also have special properties such as UV resistance, Chemical resistance, high temperature resistance and even anti-bacterial properties, depending on the coating materials and the process of creating the surface.

Sample applications for omniphobic surface protection include:

  • Marine: Omniphobic coatings created with nanotechnology can be applied to ships and other marine structures to prevent the accumulation of scratches, shells and other marine organisms. This can help reduce drag and fuel consumption.
  • Water treatment: Used in water treatment plants to prevent the formation of biofilms that can clog pipes and reduce the effectiveness of treatments.
  • Oil and Gas: Omniphobic coatings created with nanotechnology can be applied to oil and gas pipelines to prevent the accumulation of wax, paraffin and other substances that clog pipes
  • Medical: omniphobic surfaces created by nanotechnologies can be used in medical devices such as catheters and stents to prevent blood clots
  • Automotive:

    1) Paint coatings:
    applied to the exterior of cars to reduce the buildup of dirt, dust, and other substances that can make the car difficult to clean. Improves the aerodynamics of the car, which can lead to better fuel efficiency.
    2) Windshields / Mirrors: prevent the buildup of raindrops, which can improve visibility in rainy conditions and reduce the need for wipers.
    3) Interior surfaces: e.g. seats and dashboards, to to repel liquids and make them easier to clean.
    4) Fuel systems: fuel tanks and fuel injectors, to prevent the buildup of dirt and other substances that can clog the system and reduce performance.
    5) Engine: oil and coolant systems, to improve their performance and efficiency.
  • Buildings: Omniphobic coatings created with nanotechnology can be applied to building exteriors and roofing materials to reduce dirt and dust accumulation.
  • Appliances: Nanotechnology-engineered omniphobic coatings can be used to create non-stick surfaces on cookware, ovens, and other kitchen appliances
  • Textiles: Nanotechnology-engineered omniphobic coatings can be applied to fabrics to resist liquids and stains.

Takeaway

Omniphobic surfaces are similar to hydrophobic surfaces in that they both repel liquids, but there is an important distinction between the two: Omniphobic surfaces have the ability to repel not just water but also oils, solvents and other materials.

Insight into
Nanocoatings

What are Nanocoatings, actually?

Nanocoatings are a result of the rapidly evolving field of nanotechnology, which involves the study and manipulation of materials on an incredibly small scale - at the nanometer level.
Utilising the unique properties of materials at this scale, scientists and engineers are able to develop new materials and products with enhanced properties and functionality. Nanocoatings, in particular, use nanoparticles to create a thin layer of coating that provides a range of benefits to surfaces.

Nanocoatings are typically made up of tiny particles known as nanoparticles, which range in size from 1 to 100 nanometers. These particles can be made from a variety of materials, including metals, ceramics, polymers, and composites. The small size of these particles allows them to be applied in extremely thin layers, resulting in coatings that are highly effective and efficient.

Nanocoatings can be applied to a variety of surfaces, such as metals, plastics, glass, and ceramics, and can offer a range of benefits, such as increased durability, improved corrosion resistance, enhanced electrical conductivity, improved biocompatibility and many more. They have a wide range of applications across many industries, including automotive, aerospace, electronics, energy, and healthcare.

To learn more about how nanocoatings can benefit your specific needs, please Contact us.

How does Nano-Coating Work?

Briefly

Nano-coating involves creating a protective layer of nanoparticle-size substances on the surface of an object. The term 'nano', in this case, refers to the nanometer scale of these particles (1 nanometer = 10^-9 meters). Because of their tiny size, these particles can cover a large surface area and fill microscopic irregularities on the surface.

Here's what generally happens:

  • Atomic Adherence: When the nano-coating material is applied to the surface, the nanoparticles get physically or chemically adhered to the surface of the substrate due to forces like van der Waals forces, electrostatic forces, or through covalent bonds. The type of adherence mainly depends on the material of the substrate and the nanoparticle compounds used.
  • Monolayer Formation: The adhered nanoparticles organise themselves into a uniform, tightly packed layer, often called a monolayer. This monolayer, although extremely thin (at a nanometer scale thickness), provides a barrier against the environment.
  • Surface Modification: The structure that these nanoparticles form on the substrate modifies its surface characteristics. The nanoparticles can alter the surface energy of the substrate in a way that can make the surface either attract or repel other materials (like water, oil, etc.). For example, a hydrophobic nano-coating increases the contact angle of water droplets on the surface, making the surface repel water.
  • Enhanced Properties: Due to nano-coating's thinness and even distribution, the substrate maintains its original texture and appearance but gains the protective or enhancing properties of the nanoparticles. These properties can range from anti-corrosion, scratch resistance, hydrophobicity, UV resistance, and more, depending upon the nanoparticles used.

More Detailed

At the nanoscale, entities with a range of between 1 and 100 nanometers in size, the classical laws of physics start to give way to quantum effects. To consider their size context, if a nanoparticle was the size of a marble, then one meter would stretch to the size of the Earth!

Nanocoatings work due to the profound alteration of material properties at this quantum scale. As the component particle size reduces to the nanometer range, the percentage of atoms on the surface increases substantially, causing surface-dominated properties such as reactivity and interaction strength to significantly enhance. Moreover, quantum phenomena like quantum confinement, which alter the electronic and optical properties, start becoming influential.

The outcome is that nanocoatings can present uncommon properties like superior strength, unparalleled chemical resistance, high heat tolerance, or exceptional transparency, among others. Scientists and engineers can tune these features depending upon the utilised nano-materials and methods of coating deposition.

All these sophisticated traits of nanocoatings are far beyond just being a simple reduction in size. It's about stepping into the domain of quantum mechanics, manipulating matter at an almost elemental level, and utilising the best of both physical and chemical sciences to engineer materials with unprecedented properties.

Application of
Nanocoatings

What materials can be Nano-Coated?

A wide range of materials can be nano-coated, including metals, ceramics, polymers, composites, glasses, biomaterials, semiconductors, biomedical implants, textiles, concrete, wood/timber, and quartz.

Examples include:

  • Metals: Metals such as aluminium, steel, and titanium can be nano coated to improve their corrosion resistance, wear resistance, and tribological properties.
  • Ceramics: Ceramic materials such as alumina, silicon carbide, and zirconia can be nano coated to improve their wear resistance, corrosion resistance, and biocompatibility.
  • Polymers: Polymers such as polyethylene, polypropylene, and polycarbonate can be nano coated to improve their wear resistance, corrosion resistance, and tribological properties.
  • Composites: Composites such as fibre-reinforced polymers, metal-matrix composites, and ceramic-matrix composites can be nano coated to improve their wear resistance, corrosion resistance, and tribological properties.
  • Glasses: Glass can be nano coated with various materials, such as titanium dioxide, silicon dioxide or zinc oxide to improve its hydrophobicity, scratch resistance, and UV protection.
  • Biomaterials: Biomaterials such as biodegradable polymers, natural fibres, and ceramics can be nano coated to improve their bioactivity and biocompatibility.
  • Semiconductors: Semiconductor materials such as silicon and gallium arsenide can be nano coated to improve their electrical and optical properties.
  • Textiles: Textile materials such as cotton, wool, and synthetic fabrics can be nano coated to improve their water and stain resistance, UV protection, and antimicrobial properties.
  • Concrete: Concrete and other construction materials can be nano coated with materials such as silica and titanium dioxide nanoparticles to improve their strength, durability, and self-cleaning properties.
  • Wood/Timber: Wood and timber materials such as pine, oak, maple, and cedar can be nano coated to increase their water repellency, insect resistance, durability, and resilience to wear. These properties contribute to enhanced weathering resistance, slower natural ageing process, improved aesthetics, and overall a longer lifespan for wooden products.
  • Quartz: Quartz surfaces, often used in countertops, tiles, and many other products due to its robustness and aesthetic features, can be nano coated to enhance their stain resistance, decrease water absorption, provide a glossier finish, and minimise bacterial adhesion for cleanliness and hygiene. The increased durability reduces replacement and maintenance costs, maintaining its original look for a longer time.
  • Plastics: Plastic materials can be nano-coated to enhance their hardness, UV protection, scratch resistance while also improving colour and gloss retention, improving the overall aesthetics of plastic products.
  • Stones: Natural stones such as marble and granite can be nano-coated for hydrophobic and oleophobic properties and UV protection, thereby improving the longevity, aesthetic look, and durability of these materials.
  • Paper: Paper can be nano-coated to achieve water, oil, and bacterial resistance, making it beneficial for packaging purposes while maintaining the texture of the paper.
  • Leather: Applying nano-coating on leather surfaces can increase their resistance to water and oil, stain resistance, and durability while preserving its breathability.

How are Nanocoatings applied?

Generally

The choice of application method will depend on the characteristics of the coating and the surface being coated, such as the shape and size of the surface, the desired thickness and uniformity of the coating, and the required properties of the coating.

Lotus Nano advises on several methods to apply Nanocoatings

  • Sol-Gel method: This is a common method for applying Nanocoatings, where a precursor solution is applied to the surface, followed by curing or drying to create the coating.
  • Physical Vapour Deposition (PVD): PVD involves the use of a vacuum chamber to deposit a thin film of material onto a substrate. The coating is formed by the condensation of vaporised material onto the surface.
  • Chemical Vapour Deposition (CVD): CVD is a similar process to PVD, but instead of using vaporised material, chemicals are used to deposit a thin film of coating onto the surface.
  • Spin Coating: This is a simple and inexpensive method to apply Nanocoatings, where a solution containing the coating material is applied to the surface using a spinning motion. This method is commonly used to apply thin films of uniform thickness.
  • Dip coating: The substrate is dipped into a solution containing the coating material. After being withdrawn, the substrate is then dried.
  • Spray coating: the surface is coated by spraying the coating material onto the surface, by using high-pressure spray gun.
Some methods need specific equipment, materials and skilled personnel, so when applying such coatings, it's always good to consult with experts or service providers like Lotus Nano who have the knowledge and experience.

Considerations &
Troubleshooting

Things to consider when Nanocoating

Successful Nanocoating Applications are the result of a few factors. Lotus Nano has the expertise and experience to guide companies to the desired results.
  • Substrate and coating: Clean, defect-free substrates and suitable coating solutions based on desired properties.
  • Application and conditions: Proper methods used in controlled environments for uniform coverage.
  • Quality assurance: Inspection and performance evaluation of coatings.
  • Preparation and storage: Surface preparation and appropriate storage for long-term performance.
  • Customisation and compatibility: Specific requirements achieved with compatible solutions.
  • Scale-up and durability: Transfer from small scale to industrial levels and wear-and-tear resistance.
  • Regulatory and safety concerns: Compliance with laws, regulations, safe handling and health risks.
  • Economic and environmental considerations: Benefits justification, sustainable materials, energy consumption, and disposal care.
  • Testing and improvement: Validations and continuous advancements for better results.
  • Surface concerns: Attention to energy, chemistry, roughness, and cleanliness of substrates.
  • Process aspects: Focus on coating homogeneity, standardisation, flexibility, and proper modifications.
  • Performance criteria: Adhesion, porosity, impact, and corrosion resistance for optimal end results.
  • Coating properties: Control over dry film thickness, cost-effectiveness, viscosity, and rheological properties.
  • Resistance characteristics: Stability against UV and weather damage.
  • Technical evaluations: Assessment of film formation and microstructure.
Keep in mind that this list is no particular order, nor is it complete and the specific prerequisites will vary depending on the type of coating, the substrate, and the application.

Can Nanocoatings fail?

Yes, like any technology, nanocoatings can potentially fail. This is due to a variety of challenges and factors, each unique to the specific application, coating material, and conditions. We've compiled a non-exhaustive list of some of the most common challenges below. Bear in mind, they're in no particular order, and there are many other factors to consider not included here.
  • Inadequate surface preparation: In order for a nanocoating to properly adhere to a surface, it is important that the surface is thoroughly cleaned and prepared before application. If the surface is not properly cleaned or if there is residual contamination, the nanocoating may not properly bond to the surface, leading to premature failure.
  • Improper application: Applying a nanocoating improperly, such as using the wrong application method or applying too thin of a coating can lead to uneven coverage and poor performance. Also, not curing the coating properly can lead to a weaker bond.
  • Environmental factors: Certain environmental factors, such as extreme temperatures, UV exposure, and exposure to chemicals or abrasives can cause nanocoatings to degrade and fail prematurely. If a coating is not designed to withstand the specific environmental conditions it will be exposed to, it may not provide the desired level of protection.
  • Material incompatibility: Some nanocoatings are not compatible with certain types of materials, and may not adhere properly or provide adequate protection. It is important to match the right coating to the right substrate material.
  • Lack of robustness: Some coatings that are designed for specific applications may not be robust enough to withstand the wear and tear of daily use. They may not be able to withstand the wear and tear of daily use and degrade over time, causing the coating to fail.
  • Lack of quality control: Some coatings may fail due to lack of quality control during the production process. This can lead to inconsistencies in the composition and properties of the coating, resulting in poor performance and premature failure.
  • Limited durability: Due to their small size, nanoparticles in the coatings may be more prone to migration or aggregation, which can lead to decreased performance and coating failure over time.
  • Stability of the coating: some coatings may degrade due to chemical reactions with other substances such as humidity or acids. This can lead to loss of properties and a decrease in the performance of the coating.
  • Lack of proper testing and validation: While laboratory testing is important for understanding the properties and potential of a coating, it is also essential to conduct real-world testing to evaluate the coating's performance under actual use conditions. This can help identify potential issues and allow for adjustments to be made before the coating is released for commercial use.
  • Proper maintenance: Poor maintenance such as not cleaning the surface properly or not applying the coating correctly can lead to a coating failure.
As you can see there is plenty to consider to get it right.

Specification &
Choices

Nanocoatings we can assist with?

Lotus Nano is your one-stop firm for nanocoatings:

  • Anti-Corrosion: Applied to metal, barrier against corrosive materials, prevents oxidation.
  • Antimicrobial: Inhibits growth of microorganisms, suitable for healthcare, education, public transport, can deactivate SARS-Cov2.
  • Thermal Barrier: Used in aviation, applicable to metallic surfaces, suitable for high-performance automobiles.
  • Anti-Abrasion: Used in aerospace, automotive, biomedical, energy industries, enhances performance, extends equipment lifespan, reduces costs.
  • Self-Healing: Contains nano-capsules, repairs surface damage, used in phones and automotive paints.
  • Anti-Reflection: Reduces light reflection, improves device performance, suitable for solar panels, touch screens, optical fibres, eyeglasses, LED lighting.
  • Anti-Graffiti: 'Sacrificial' or 'non-sacrificial' options, long-lasting, easy to maintain, perfect for outdoor and high traffic areas, used in industrial settings.
  • Flame Retardant: Heat-resistant, deposited in nanoscale layers, adheres to flammable plastics, woods, textiles, reduces ignition ability.
  • Scratch Resistant: Comprises hard nano-materials, hardened surface, resistant to scratches and scuffs.
  • Non-stick/Self-Clean: Repel water (hydrophobic) and oil (oleophobic), repel dirt and dust, hydrophilic for self-cleaning.

Let's have a conversation!

Contact us!

Contact
Lotus Nano

Ask us anything about how you wish to transform your surfaces with Nanocoatings. We take care of the rest!

Write to us

UP